The Asymptotic Cost of Lagrange Interpolatory Side Conditions

R. K. BEATSON

University of Canterbury, Christchurch, New Zealand Communicated by E. W. Cheney Received November 25, 1975

1. INTRODUCTION

In this paper we improve some results of Paszkowski [3, 4], and Johnson [2] concerning the cost of interpolatory side conditions.

Let T be compact Hausdorff, and let h, k belong to C(T), the space of continuous real valued functions on T, and satisfy

$$h(t) < k(t), \qquad t \in T. \tag{1.1}$$

Define the set of functions

$$X = \{ g \in C(T) \colon h(t) \leq g(t) \leq k(t) \text{ for all } t \in T \}.$$

For convenience the case of no constraints will be denoted by X = C(T).

Consider an increasing sequence of finite-dimensional linear subspaces $\{N_{\nu}\}_{\nu=1}^{\infty}$ of C(T), whose union N is dense in C(T), and the corresponding sequence of convex sets $M_{\nu} = N_{\nu} \cap X$ whose union M is clearly dense in X. Given a finite set $\{x_1^*, ..., x_{\nu}^*\}$ of elements of $C(T)^*$, the dual of C(T), and $f \in C(T)$, define the set of functions

$$4 := \{ g \in C(T) \colon x_i^*(g) = x_i^*(f), i = 1, ..., \gamma \}.$$

For each $\nu = -1, 2, 3, \dots$ define $E_{\nu} = E_{\nu}(f)$ by

$$E_{\nu}(f) = \inf_{g \in M_{\nu}} ||f - g||$$
(1.2)

where

$$||f - g|| = \sup_{t \in T} ||f(t) - g(t)|.$$

Similarly if $M_{\nu} \cap A$ is nonempty define

$$E_{\nu}(f, A) = \inf_{g \in (M_{\nu} \cap A)} [f - g].$$
(1.3)

Copyright \leftarrow 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

ISSN 0021-9045

Clearly $E_{\nu}(f) \leq E_{\nu}(f, A)$ whenever the right member exists. It is natural to ask if the ratio $E_{\nu}(f, A)/E_{\nu}(f)$ has upper bounds. Paszkowski [3, 4] first posed such questions, showing in [4];

THEOREM 1.1. If X = [a, b], $M_{\nu} = N_{\nu}$ is the space of algebraic polynomials of degree not exceeding ν for $\nu = 1, 2, 3, ..., and <math>\{x_i^*\}_{i=1}^{\gamma} = \{f_i\}_{i=1}^{\gamma}$ are point evaluations

$$x_i^*(f) = f(t_i), \quad a \leq t_i \leq b, \quad i = 1, ..., \gamma,$$

then there is a number v_1 , not depending on f, such that for all $f \in C[a, b]$ and $v \ge v_1$

$$E_{\nu}(f,A) \leq 2E_{\nu}(f).$$

More recently Johnson [2] has obtained theorems of a similar nature in a more general context. For the space C(T) a general theorem of Johnson [2, Theorem 2.1] reduces to

THEOREM 1.2. If X = C(T), then given any $x_1^*, ..., x_{\nu}^* \in X^*$, there exists a constant C and a positive integer ν_1 , not depending on f, such that for every f in C(T) and $\nu \ge \nu_1$, $E_{\nu}(f, A)$ is defined and

$$E_{\nu}(f,A) \leqslant CE_{\nu}(f). \tag{1.4}$$

He also shows (Johnson [2, Theorem 3.5])

THEOREM 1.3. Suppose X = C(T) and $f \in C(T)$. Suppose $\{x_i^*\}_{i=1}^{\gamma} = \{f_{i_i}\}_{i=1}^{\gamma}$ are point evaluations on C(T) such that

$$|f(t_i)| < |f_i|, \quad i = 1, ..., \gamma,$$
 (1.5)

then there exist C and v_1 such that for every $v \ge v_1$ there is an $m_v \in N_v$ for which

$$m_{\nu}(t_i) = f(t_i), \qquad i = 1, ..., \gamma,$$
 (1.6)

$$\|m_{\nu}\| \leqslant \|f^{\dagger}|, \tag{1.7}$$

$$||f - m_{\nu}|| \leqslant CE_{\nu}(f). \tag{1.8}$$

Using a result of Yamabe [5] we prove the following

THEOREM 1.4. If X = C(T), and $\{x_i^*\}_{i=1}^{\gamma} = \{f_i\}_{i=1}^{\gamma}$ are point evaluations on C(T), then there exist v_1 and a sequence $\{\delta_{\nu}\}_{\nu=\nu_1}^{\infty}$, not depending on f, such that for any $f \in C(T)$, $E_{\nu}(f, A)$ is defined for $\nu \ge \nu_1$ and

$$E_
u(f,A) \leqslant (2+\delta_
u) E_
u(f), \qquad
u \geqslant
u_1,$$

where

 $\lim \delta_r = 0.$

THEOREM 1.5. If $\{x_i\}_{i=1}^{*y} = \{f_{i_i}\}_{i=1}^{y}$ are point evaluations on C(T) and $f \in X \setminus M$ satisfies

$$h(t_i) < f(t_i) < k(t_i), \qquad i = 1, \dots, \gamma,$$

then there exists a v_1 such that $E_v(f, A)$ is defined for $v \ge v_1$ and

 $\limsup (E_{\nu}(f, A)/E_{\nu}(f)) \ll 2.$

By [2, Theorem 4.1], in which we may take the constant as 2, there follows

COROLLARY 1.6. If X = C(T), $f \in C(T) \setminus N$, and $f(t_i) < ||f|| for i < 1, ..., \gamma$ then there exist a ν_1 and a sequence $\{g_{v_1 v = v_1}^{\gamma_x}$ of $g_v \in N_v$ satisfying $g_v(t_i) = f(t_i)$ for $i = 1, ..., \gamma$, $||g_v|| \le ||f||$ and $\limsup_{v \in v} (||f - g_v||/E_v) \le 4$.

2. PROOFS OF THEOREMS

First we construct a function essential to both proofs.

By the Hausdorff property of T we can find disjoint open sets $B_1, ..., B_{\gamma}$ contailing $t_1, ..., t_{\gamma}$, respectively. $T \setminus B_j$ is closed $j = 1, ..., \gamma$ and so also are the singletons $\{t_j\}$. Since compact Hausdorff implies normal the Urysohn theorem (see, e.g., Dugundji [1]) guarantees the existence of functions f_j , $j = 1, ..., \gamma$ such that

$$f_j(t_j) = 1 \tag{2.1}$$

$$0 \leqslant f_j(t) \leqslant 1, \qquad t \in B_j, \qquad (2.2)$$

$$f_j(t) = 0, \qquad t \in T \setminus B_j . \tag{2.3}$$

Proof of Theorem 1.4. Consider the following theorem of Yamabe [5].

THEOREM 2.1. Let *M* be a dense convex subset of a real normed linear space *X* and let $x_1^*, ..., x_{\gamma}^* \in X^*$. Then for each $f \in X$ and each $\epsilon > 0$ there exists a $g \in M$ such that $||f - g|| < \epsilon$ and

$$x_i^*(g) = x_i^*(f), \quad i = 1, ..., \gamma.$$

By this theorem there exist functions in N arbitrarily close to f_i which interpolate to f_i at the points t_i , $i = 1, ..., \gamma$. Using also the finite

290

dimensionality of the N_{ν} , there exists a ν_1 such that for $\nu \ge \nu_1$ there exist best approximations $q_{\nu j}$ from N_{ν} to f_j satisfying

$$q_{\nu j}(t_i) = f_j(t_i) = \delta_{ij}, \quad i = 1, ..., \gamma, \quad j = 1, ..., \gamma,$$

where δ_{ij} is the Kronecker delta, and also if

$$\delta_{\nu} = \max_{j=1,\ldots,\nu} |q_{\nu j} - f_j|$$

then

$$\delta_{\nu} \to 0$$
 as $\nu \to \infty$.

Let $q_{\nu 0}$ be a best approximation to f from N_{ν} . For $\nu \ge \nu_1$ define

$$q_{\nu} = q_{\nu 0} + \sum_{j=1}^{\gamma} (f(t_j) - q_{\nu 0}(t_j)) q_{\nu j}$$

Then q_{ν} interpolates f at the points t_j , $j = 1, ..., \gamma$ and

$$||q_{\nu} - f|| \leq ||q_{\nu 0} - f|| + \Big\| \sum_{j=1}^{\nu} (f(t_j) - q_{\nu 0}(t_j)) q_{\nu j} \Big\|.$$

Since the B_j are disjoint and

$$\|q_{vj}(t)\| \leqslant \left| egin{array}{cc} 1 + \delta_v \,, & t \in B_j \ \delta_v \,, & t \in T ig B_j \end{array}
ight| j = 1,..., \gamma,$$

the second term on the right-hand side is bounded by

$$E_{\nu}(f)(1+\gamma\delta_{\nu}).$$

The theorem now follows.

Proof of Theorem 1.5. In order to prove the theorem we need some lemmas.

LEMMA 2.2. Let X, f, and $f(t_i)$, $i = 1, ..., \gamma$, be as in the statement of Theorem 1.5. Then for each $\epsilon > 0$ there exists $g \in M$ satisfying

$$g(t_i) = f(t_i), \quad i = 1, ..., \gamma,$$
 (2.4)

$$\|g-f\| < \epsilon. \tag{2.5}$$

Proof. There exists $\epsilon_0 > 0$ such that if $\epsilon_0 \ge \epsilon > 0$ the function

$$f_{\epsilon}(t) = \begin{vmatrix} k(t) - \epsilon & \text{if } f(t) > k(t) - \epsilon, \\ h(t) + \epsilon & \text{if } f(t) < h(t) + \epsilon, \\ f(t) & \text{otherwise,} \end{vmatrix}$$

is continuous. Also there exists ϵ_1 , $\epsilon_0 \geqslant \epsilon_1 > 0$ such that for $\epsilon_1 \geqslant \epsilon > 0$

$$f_{\epsilon}(t) = f(t_i), \qquad i = 1, \dots, \gamma.$$

For such an ϵ , by Yamabe's theorem (Theorem 2.1) applied to C(T) and N there exists $g \in N$ such that

$$g(t_i) = f_{\epsilon}(t_i), i = 1, ..., \gamma, \quad \text{and} \quad |f_{\epsilon} - g| < \epsilon.$$

Thus

$$g \in M, g(t_i) = f(t_i), i = 1, ..., \gamma$$
 and $f - g + < 2\epsilon$.

The result follows.

Given $f \in X$ satisfying the conditions of Theorem 1.5 define for each $j = 1, ..., \gamma$, constants

$$a_j = (k(t_j) - f(t_j))/2, \qquad a_j = (h(t_j) - f(t_j))/2,$$

and continuous functions

$$f_{j}(t) = \min[(a_{j} f_{j} + f)(t), k(t)],$$

$$f_{j}(t) = \max[(a_{j} f_{j} + f)(t), h(t)].$$

By Lemma 2.2, and the finite dimensionality of the N_{ν} , there exists a ν_1 such that for $\nu \ge \nu_1$ there exist best approximations from M_{ν} , $p_{\nu j}^+$, $p_{\nu j}^-$ of f_j^+ , f_j^- , respectively, satisfying

$$p_{\nu j}^{+}(t_i) = f_j^{+}(t_i), \qquad i = 1, ..., \gamma,$$

$$p_{\nu j}(t_i) = f_j^{-}(t_i), \qquad i = 1, ..., \gamma,$$

and the normalized maximum error in these approximations

$$\delta_{\nu} \sim \max_{j=1,...,\nu} \max(||p_{\nu j}^+ - f_j^+||, ||p_{\nu j}^- - f_j^-||) / \min_{i=1,...,\nu} \min(||a_i^-||, ||a_i^-||)$$

converges to zero as ν goes to infinity. Let $p_{\nu 0}$ be a best approximation to f from M_{ν} . Define

$$\lambda_{\nu j}^{+} = \max(0, (f(t_j) - p_{\nu 0}(t_j))/a_j^{+}),$$

$$\lambda_{\nu j}^{-} = \max(0, (f(t_j) - p_{\nu 0}(t_j))/a_j^{-}).$$
(2.6)

We note that $\lambda_{\nu i}^+$, $\lambda_{\nu i}^-$ are both nonnegative and at least one is zero. Define

$$p_{\nu j} = p_{\nu j}^{+}, \quad a_{j} = a_{j}^{+}, \quad \text{if} \quad \lambda_{\nu j}^{+} \ge 0,$$

 $p_{\nu j} = p_{\nu j}^{-}, \quad a_{j} = a_{i}^{-}, \quad \text{if} \quad \lambda_{\nu j}^{-} \ge 0,$
 $p_{\nu j} = p_{\nu j}^{+}, \quad a_{j} = a_{j}^{-}, \quad \text{if} \quad \lambda_{\nu j}^{+} = \lambda_{\nu j}^{-} \ge 0.$

and

$$\lambda_{
u j} = \lambda^+_{
u j} + \lambda^-_{
u j}, \qquad j = 1,...,\, \gamma.$$

We choose $\nu_2 \geqslant \nu_1$ so large that $\lambda_{\nu j}$ is less than 1 for $j = 1,..., \gamma$ and $\nu \geqslant \nu_2$. Then

LEMMA 2.3. Let $\lambda_{\nu j}$, $p_{\nu j}$, ν_2 be defined as above. Then for all $\nu \ge \nu_2$ there exist

$$\theta_i = \theta_i(\nu), \qquad i = 0, ..., \gamma$$

such that

$$heta_0 > 0; \qquad heta_i \geqslant 0, \qquad i = 1,..., \gamma, \tag{2.7}$$

$$\sum_{i=0}^{\gamma} \theta_i = 1, \tag{2.8}$$

$$\left(\sum_{i=0}^{\gamma} \theta_i p_{\nu i}\right)(t_j) = f(t_j), \qquad j = 1, \dots, \gamma,$$
(2.9)

$$heta_i(
u) \leqslant (1 + \epsilon_{
u}) \ \lambda_{
u i}, \qquad i = 1,..., \gamma,$$
 (2.10)

where

$$\epsilon_{\nu} \to 0 \qquad as \ \nu \to \infty.$$
 (2.11)

Proof. The existence of $\{\theta_i\}_{i=1}^{\gamma}$ satisfying (2.7)–(2.9) can be established by induction.

Induction basis. Take $\theta_{00} = 1$.

Induction step. Given $\theta_{s0}, ..., \theta_{ss} \ge 0$ such that

$$\theta_{s_0} > 0; \quad \theta_{s_i} \ge 0, \quad i = 1, ..., s; \quad \sum_{0}^{s} \theta_{s_i} = 1, \quad (2.12)$$

$$\sum_{i=0}^{s} \theta_{si} p_{\nu i}(t_j) = f(t_j), \qquad j = 1, ..., s, \qquad (2.13)$$

for $s = \gamma_1$, $0 \leq \gamma_1 < \gamma$, we prove the existence of $\theta_{s+1,0}$,..., $\theta_{s+1,s+1}$ satisfying (2.12) and (2.13) for $s = \gamma_1 \perp 1$.

Take

$$p(\alpha) = (1 - \alpha) \left(\sum_{0}^{s} \theta_{si} p_{vi}(t_{s+1}) \right) + \alpha p_{v,s+1}(t_{s+1}) - f(t_{s+1}).$$

If p(0) = 0, take $\theta_{s+1,i} = \theta_{si}$, $i \leq s$; $\theta_{s+1,s+1} = 0$. If $p(0) \neq 0$, then by the choice of $p_{v,s+1}$ and since $\lambda_{vj} < 1$, p(0) lies on one side of 0 and p(1) on the

other. Hence by linearity of the function $p(\alpha)$ there is a unique α , $0 < \alpha < 1$ such that $p(\alpha) = 0$. Taking

$$\theta_{s+1,i} = \begin{vmatrix} (1-\alpha) & \theta_{si} \\ \alpha & i = 0, \dots, s, \\ i = s + 1, \end{vmatrix}$$

we have the induction step.

It remains to show (2.10) and (2.11).

We note that on entering the inductive step we deal with a function

$$\sum_{i=0}^{s} \theta_{si} p_{vi}$$

whose value at t_{s+1} lies on the line segment joining $p_{\nu 0}(t_{s+1})$ and $f(t_{s+1})$. This shows that each $\theta_{s+1,s+1}$ is less than or equal to θ'_{s+1} where θ'_{s+1} is chosen so that $(1 - \theta'_{s+1}) p_{\nu 0} - \theta'_{s+1} p_{\nu,s+1}$ interpolates to f at t_{s+1} . Since the θ_{si} , i = 0, ..., s, decrease towards the $\theta_i = \theta_i(\nu)$ it follows that

$$0 \leqslant \theta_i(\nu) \leqslant \theta_i', \quad i = 1, ..., \gamma.$$
 (2.14)

Now if $\lambda_{\nu i}$ is zero then so is θ_i' and from (2.14), (2.10) holds. If $\lambda_{\nu i}$ is nonzero so is θ_i' and

$$\lambda_{\nu i} = \frac{(f - p_{\nu 0})(t_i)}{(p_{\nu i} - f)(t_i)}, \qquad \theta_i' = \frac{(f - p_{\nu 0})(t_i)}{(p_{\nu i} - p_{\nu 0})(t_i)}.$$

Thus

$$\frac{\theta_i'}{\lambda_{\nu i}} = \frac{(p_{\nu i} - f)(t_i)}{(p_{\nu i} - p_{\nu 0})(t_i)} \to 1 \quad \text{as } \nu \to \infty \text{ through } \nu \text{ such that } \lambda_{\nu i} \neq 0.$$

This proves (2.10) and (2.11).

From the above lemma and the convexity of M_{ν} there exists for $\nu \gg \nu_2$

$$p_{\nu}^{*} = \sum_{i=0}^{\nu} \theta_{i}(\nu) p_{\nu i}$$

in M_{ν} which interpolates to f at t_j , $j = 1,..., \gamma$. Write $|p_{\nu}^{*}(t) - f(t)| \leq \sum_{i=0}^{\gamma} \theta_i(\nu) |p_{\nu_i}(t) - f(t)|$. Using the estimate of the last lemma, namely

$$0\leqslant heta_i(m{
u})<(1+\epsilon_v)\,\lambda_{vi}$$

where $\epsilon_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$, the estimate

and the estimates

$$\lambda_{\nu i} \mid a_i \mid \leq E_{\nu}(f), \qquad i = 1, ..., \gamma,$$

we obtain

$$|p^{*}(t) - f(t)| \leq \begin{vmatrix} E_{\nu} + (1 + \epsilon_{\nu})(1 + \delta_{\nu}) & E_{\nu} \\ + (\gamma - 1)(1 + \epsilon_{\nu}) & \delta_{\nu}E_{\nu} \\ E_{\nu} + \gamma(1 + \epsilon_{\nu}) & \delta_{\nu}E_{\nu} \\ & \text{if } t \in T / \left(\bigcup_{i=1}^{\gamma} B_{i} \right) \end{vmatrix}$$

and writing $\delta_{\nu}' = \gamma (1 + \epsilon_{\nu}) \, \delta_{\nu} + \epsilon_{\nu}$

$$\|p^*(t)-f(t)\|\leqslant (2+\delta_v')E_v$$
 .

This concludes the proof.

REFERENCES

- 1. J. DUGUNDJI, "Topology," Allyn & Bacon, Boston, Mass., 1966.
- 2. D. J. JOHNSON, Jackson type theorems for approximation with side conditions, J. Approximation Theory 12 (1974), 213-229.
- 3. S. PASZKOWSKI, On the Weierstrass approximation theorem, *Colloq. Math.* 4 (1956), 206-210.
- 4. S. PASZKOWSKI, On approximation with nodes, Rozpr. Mat. 14 (1957), 1-61.
- 5. H. YAMABE, On an extension of Hellys theorem, Osaka J. Math. 2 (1950), 15-17.