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I. INTRODUCTION

In this paper we improve some results of Paszkowski [3, 4], and Johnson [2]
concerning the cost of interpolatory side conditions.

Let 7 be compact Hausdorff, and let 4, k& belong to C(T), the space of
continuous real valued functions on 7. and satisfy

h(ty < k(t), reT. (1.1
Define the set of functions
X ={geC(T)y: hlt) = g(t) < k(t)forall te T}.

For convenience the case of no constraints will be denoted by X — C(T).

Consider an increasing sequence of finite-dimensional linear subspaces
{N,}7, of C(T), whose union N is dense in C(T), and the corresponding
sequence of convex sets M, == N, N X whose union M is clearly dense in X.
Given a finite set {x,*,..., x,*! of elements of C(7)*, the dual of C(T), and
fe C(T), define the set of functions

A ~{geT)y:xXg)  xXf)i— Loyh
Foreach v = 1,2, 3,... define £, - E(f) by
ELf) = jnbof g (1.2)
where
A A sup ) - gl
1e

Similarly if M, N A4 is nonempty define

E(f. A inf g . (1.3}
LS A) es(A A Y >
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Clearly E(f) << E,(f, A) whenever the right member exists. 1t is natural to
ask if the ratio E,(f, A)/E,(f) has upper bounds. Paszkowski [3, 4] first posed
such questions, showing in [4];

THEOREM 1.1. If X = [a, b], M, -~ N, is the space of algebraic polynomials
of degree not exceeding v for v == 1,2, 3, and {x;%\Y_; == {f, }1_{ are point
evaluations

'Yz'*(f) = f(ll)a a = 11 =2 bs i ]7-.-, Vs

then there is a number v, , not depending on f, such that for all fe Cla. b] and
v oLy

ELf, A) = 2E(]).

More recently Johnson [2] has obtained theorems of a similar nature in a
more general context. For the space C(T) a general theorem of Johnson
[2, Theorem 2.1] reduces to

THEOREM 1.2, If X = C(T), then given any x,*,..., x,* € X*, there exists
a constant C and a positive integer v, , not depending on f, such that for cvery f
in C(TYand v > v, , Ef., A) is defined and

E(f.A) ~ CELf). (1.4)

He also shows (Johnson [2, Theorem 3.5])

THEOREM 1.3, Suppose X = C(T) and fe C(T). Suppose {x;*\7_y = {1, I 1
are point evaluations on C(T) such that

S < fil, i= Ly, (1.5)

then there exist C and vy such that for every v = vy there is an m. € N, for which

mt) = f(t), 0= Loy (1.6)
P, | < i 1 (1.7)
L —m | S CELSf). (1.8)

Using a result of Yamabe [5] we prove the following

THEOREM 1.4, If X = C(T), and {x,*}7_1 = { i}V, are point ecvaluations
on C(T), then there exist vy and a sequence {5,} | » 1ot depending on f. such

viy=p

that for any f€ C(T), ELf, A) is defined for v == v, and
EV(.f; A) = (2 73“ 81}) Ev(f‘)’ v \/ Vi,
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where
limé, 0.

THEOREM .5, If {x,*\Y | = {f, 17 are point cvaluations on C(T) and
Je X\ M satisfies

h(t;) < fue;) <2 ki), [ Iy,
then there exists a vy such that Ef, AY is defined for v - v, and
lim sup (E(/. AVE(f) 2.
By [2. Theorem 4.1], in which we may take the constant as 2, there follows

CoroOLLARY 1.6, IfX - C(T), fe COTYN,and f(t;) < i f fori ..y
then there exist a vy and a sequence § g\ v, of g, € N, satisfving g(t;) -~ (1)
Sor i o 1., yolig i< fUand imsup,_, ((f - g.//E) - 4

2. PROOFS OF THEOREMS

First we construct a function essential to both proofs.

By the Hausdorft property of 7" we can find disjoint open sets B, ,.... B,
contaiing f, ...., 1, , respectively. T B; is closed j — I....,y and so also are the
singletons {¢;}. Since compact Hausdorff implies normal the Urysohn theorem
(see, e.g.. Dugundji [1]) guarantees the existence of functions f; ./~ 1.,y

&

such that

filtyy =1 (2.1)
0 < fi(r) = L re B;. (2.2)
fit) = 0, teT\B;. 2.3

Proof of Theorem 1.4. Consider the following theorem of Yamabe [5].
THEOREM 2.1. Let M be a dense convex subset of a real normed linear

space X and let xi*,..., x,* € X*. Then for each fe X and each € 0 there
exists a g€ M such that\ f -- g, < e and

Q) ) Ly,

By this theorem there exist functions in N arbitrarily close to f; which
interpolate to f; at the points 7,, / l..... v. Using also the finite
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dimensionality of the », , there exists a v; such that for v = v, there exist
best approximations g,; from N, to f; satisfying

qv]'(ti) :f;(t,) = 81’} s [ == l""’ Vs / == ls"', %
where 6;; is the Kronecker delta, and also if

6, = max g, — f;|

1
FES) PR ¥4

then

6,0 as v — co.

I

Let g,, be a best approximation to f from N, . For v = »; define

4y = 4w i Z (/([7) - qvo(fj).) s -
i1

Then ¢, interpolates f at the points ¢,, j — 1,..., y and

L, = 11 <liqn =17+ Y ()~ qat) 4.
j=1
Since the B; are disjoint and

, .8, te B .
| (1) < N [ e T{\B- Jo= Loy,
vy 7

the second term on the right-hand side is bounded by

E(f)1 =+ y6,).
The theorem now follows.

Proof of Theorem 1.5. In order to prove the theorem we need some
lemmas.

Lemma 2.2, Let X, f, and f(t), | = L,..., y, be as in the statement of
Theorem 1.5. Then for each € > O there exists g € M satisfying

g(t) = f(1,), i= 1.y, 24
lg —fii<e (2.5)
Proof. There exists €, > O such that if ¢, > € > 0 the function

k(t) — e if f(£) > k() — e,
Ji) = [ () e if f(t) < h(t) + e
i3] otherwise,
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is continuous. Also there exists e, . ¢, => ¢ > 0 such that for ¢ > € = 0

G 1 N A e

For such an ¢, by Yamabe's theorem (Theorem 2.1) applied to C(T) and N
there exists g € N such that

g(t,) == ft), i L.y, and fo- g < e
Thus
ge M, g(t,) = f(t),i= l..y and Jf g < 2e

The result follows.
Given fe X satisfying the conditions of Theorem 1.5 define for each
oo L, v, constants

a; (k) — f()/2, a;- = W) - f@))/2,

and continuous functions

fir(@) = minl(a; f; < fX0), k(D))

S (o) = max{(a; f; = [)1), b))
By Lemma 2.2, and the finite dimensionality of the N, , there exists a v, such
that for v = v, there exist best approximations from M, , p;, p,; of fi'. fi.
respectively, satisfying

Pty = £, i L

puits) = 15 (8), IR IR

and the normalized maximum error in these approximations

81' f:r{]axy max(!p. = fi P f" N in}m vmmu a; e )

converges to zero as v goes to infinity. Let p,, be a best approximation to f
from M, . Define

A= max(0, (f(r) - pult)at),
Ay s max(0, (f(#) — polt)ia;).

(2.6)

We note that A}

vi 2

A,; are both nonnegative and at least one is zero. Define

Pui pl’j . a; = d; , it )\w . Os

Poj = Puis 4 =45 if AL -0,
Pui = /7w . ay ajr » I( /\x‘.} B ‘\;j O-
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and
No= N Age e Ly

We choose v, = v, so large that A,; is less than | for j = |,..,yand v = »,.
Then

LEmMMA 2.3, Let A, p,;, vs be defined as above. Then for all v = v, there
exist
Hi = 01’(])'), [ == Ov"'a Y

such that

B, 0, 6,0, i= l..y (2.7)
Z b; = 1, (2.8)
bt
(Z 0,-1%;)(1,-) ) e (2.9)
B.v) < (1 +e) iy @=Ly, (2.10)
where
€0  asv-— o, (2.11)

Proof. The existence of {0,}7,; satisfying (2.7)-(2.9) can be established by
induction.

Induction basis. Take 8, = 1.

Induction step. Given 8 ,..., 6., =: 0 such that

B0 Oy 0. i losy Y0, =1, (2.12)
1]
Y 0,pt) = fit). = s, (2.13)
=0

for s = v, , 0 <y, <y, we prove the existence of 8,1 ¢ ,..., 0. .,y satisfying
(2.12) and (2.13) for 5 ==, -> 1.
Take

[)(ﬂc) o= (l - rx) (2 esipui(’.s’rl)) - "va..\'-l(,v\‘l'l) ’,f(r.wl)'

If p(0) =0, take 0,1 ; = 0,1 <5:0,.4, =0.If p(0) = 0, then by the
choice of p, ., and since A,; << I, p(0) lies on one side of 0 and p(1) on the
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other. Hence by linearity of the function p(x) there is a unique «, 0 < o« << 1
such that p(x) -= 0. Taking

p (I xf,. [ == 0,...,s,

srl,2 ~ I~ - 1 1~

we have the induction step.
[t remains to show (2.10) and (2.11).
We note that on entering the inductive step we deal with a function

Z Qsipw'

=0

whose value at ¢, lies on the line segment joining p,(7,,,) and f(z,.;). This
shows that each 0, ;4 is less than or equal to ¢, where &, is chosen so
that (1 — 0,,1) p.y — 0.1 p, 51 interpolates to f at r,.,. Since the 0,
i = 0,..., s, decrease towards the 8, = 6,(v) it follows that

0L A,(v) == 8/, P =Ly 2.14)

Now if A,; is zero then so is 8, and from (2.14), (2.10) holds. If A, is
nonzero so is #,” and

)\ / ‘ va)([ g/ - (f — pvﬂ)([

v (pw f)(r ) ’ (/}u ’ pvﬂ) {)
Thus

6/ (pa— D
)\1'/ (plz pvﬂ)(r)

This proves (2.10) and (2.11).
From the above lemma and the convexity of M, there exists for v - v,

~ | as v » o0 through v such that A,; ¢ 0

* = 2;0 97’(‘/) Pui

in M, which interpolates to fat ¢;,j == L,.... y.
Write | p,*(t) — F()] << Tiso 0,00 pt) — f(1) .

Using the estimate of the last lemma, namely
0<0,(v) < (1 "~ e)A,
where ¢, — 0 as v — o0, the estimate

[P ®) — F(O) << la; | (1 fi(e)! =8

“ a; 8,, e T\\B,‘ - . 1
al(t 8y tem. oY

'
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and the estimates

Ay la; i < E(S), i== 1y,
we obtain

VE L (14 )l - 8) E,
[ oy — 11 5 &) BE,, WreO&
pH() — (D] = o

E, -l -1-€) 8,E,, if ¢ T/(U i)’i)
i=1

/

and writing 8, = y(1 + ¢€) 8, + e,

Fp*(t) — f(1) <I(2 +98,)E,.

This concludes the proof.
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