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I. INTRODUCTION

In this paper we improve some results ofPaszkowski [3, 4], and Johnson [2J
concerning the cost of interpolatory side conditions.

Let T be compact Hausdorff, and let h, k belong to C( T), the space of
continuous real valued functions on T, and satisfy

Define the set of functions

h(t) < k(t), f E T. ( 1.1 )

X= {g E CIT): h(t) g(t) kef) for alit En·

For convenience the case of no constraints will be denoted by X C( T).
Consider an increasing sequence of finite-dimensional linear subspaces

{N,.}: 1 of C( T), whose union N is dense in CCT), and the corresponding
sequence of convex sets M,. N,. n X whose union M is clearly dense in X.
Given a finite set {x1*, ..., xy *: of elements of C(T)*, the dual of CIT), and
f E C( T), define the set of functions

A {g E C(T): x,*(g) x;*(1), i i, ... , y:.
For each v

where

I, 2, 3, ... define E,.

E,.(f)

f - g 1

E,U) by

sup f(t) . g(t).
le:T

( 1.2)

Similarly if M, n A is nonempty define

L,(j~ A)

Copy:tight (. \1.)77 by AC<ldcmic Prl.'~s, Inc
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( 1.3)
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Clearly E,(f) Elf, A) whenever the right member exists. It is natural to
ask if the ratio E,(f, A)/E,(f) has upper bounds. Paszkowski [3,4] first posed
such questions, showing in [4];

THEOREM 1.1. If X C--.·C [a, b], .f1v(. N,. is the space ofalgebraic po~vnomials
of degree not exceeding v for v 1,2. 3, .... and {x/1II U)Ll are point
eraluations

Xi*(f) C.C /(1,), a t, b, i -' I, .... y,

then there is a number VI , not depending on j; such that for allf E era. b] and

More recently Johnson [2] has obtained theorems of a similar nature in a
more general context. For the space CCT) a general theorem of Johnson
[2, Theorem 2.1] reduces to

THEOREr\1 1.2. If X= CC T), then gil'en any Xl *,.... X y * E X*, there exists
a constant C and a positit'e integer VI , not depending onf, such that for ereryf
in C(T) and v V j , E,.(I; A) is defined and

E,U, A) CE,(f).

He also shows (Johnson [2, Theorem 3.5])

THEOREM 1.3. Suppose X = C( T) and fE CC T). Suppose {Xi
arc point emluations on C(T) such that

( 1.4)

I -. I ..... y, ( 1.5)

then there exist C and VI such that for erery V VI there is an tn, E NJeJr which

111, i

f ~ 111,

"fi ,

CEl!).

i =c. I .... , y. ( 1.6)

( 1.7)

(1.8)

Using a result of Yamabe [5] we prove the following

THEOREM 1.4. ff X =- CC T), and {Xi *JYd = {ftJLI are point ('mluations
on C( T), then there exist VI and a sequence {o,.}~" ' not depending on f, such
thatfor anyfE CCT), E,(f, A) is definedfor V VI and

Elf, A) (2 -i oJ E,U),
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where

TmOREM 1.5. If {x
f E XI M satisfies

R. K. BEATSO'.;

lim 8,. n.
~.' • f

U;); [ ([re point emluations on C( T) ([nd

h(t i) ,/Ui) kUi). I ... ., y.

then there exists a V[ such that EJf; A) is definedfc)r v VI ([nd

lim sup (E,/I A)/E,,(f)) ')
I·' f

By [2, Theorem 4.1], in which we may take the constant as 2. there follows

COROLLARY 1.6. ffX C(T),ft: C(T)N. andf(tJ < f for i
then there exist a VI and a sequence (g,::.." of g, E N v sati.l/ving g,.(t;)
for i J ..... y. I, g, I .r and lim sup,._, (f g,. :'! E,) 4.

2. PROOFS OF THEOREMS

I ..... y
f(til

First we construct a function essential to both proofs.
By the Hausdorff property or T we can find disjoint open sets B1 , .... B,

contaiing t[ ..... t./ • respectively. T.,Bi is closed j I, .... y and so also are the
singletons {tii. Since compact Hausdorff implies normal the Urysohn theorem
(see. e.g.. Dugundji [1]) guarantees the existence of functions fj • j I ..... Y
such that

tc rB i •

fj(tj)

o fiU)

f;(t) 0,

I. t Fe B i •

(2.1 l

(2.2)

(2.3)

Proof of Theorem 1.4. Consider the following theorem of Yamabe [5].

THEOREM 2.1. Let M be a dense convex subset of a real normed linear
space X and let Xl *, .... x,.* E X*. Then for each f E X and each E 0 there
exists agE M such that If·· . g <: E and

x,*( g) x,*(f). I ..... y.

By this theorem there exist functions in N arbitrarily close to fJ which
interpolate to fi at the points t i • i I. .... y. Using also the finite
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dimensionality of the N" , there exists a VI such that for V ~ VI there exist
best approximations qvj from N v to f, satisfying

i == J,... , y, .i = J, ... , y,

where 0ij is the Kronecker delta, and also if

i\ = . max qvj - jj !
rl •... ,y

then

as)! -+ 00.

Let qvo be a best approximation toffrom N,. . For v ~ VI define

q,. = qvo
0'

I (f(tJ- q"o(tJ) qvj .
io 1

Then q" interpolates f at the points tj , j .~ J,... , y and

-s;; qvo -- f!! + f (l(tj) ~ q"o(t;)) qvi Ii.
j~l

Since the B j are disjoint and

t E Bj

T' B .i == 1, .... y.
t E \ j

the second term on the right-hand side is bounded by

£,(f)( I T yoJ.

The theorem now follows.

Proof of Theorem 1.5. [n order to prove the theorem we need some
lemmas.

LEMMA 2.2. Let X, j, and f(ti ), i === 1,... , y, be as in the statement of
Theorem 1.5. Then for each E > 0 there exists gEM satisfying

g(tJ = f(t i ),

g - fii < E.

i =•• 1, ... , y, (2.4)

(2.5)

Proof There exists EO 0 such that if Eo ~ E 0 the function

I
k(t) .~ E

JXt) = h(t) + E

, f(t)

if f(t) > k(t) -- E,

if f(t) < h(t) -+- E,

otherwise,
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is continuous. Also there exists EI' En E[ > 0 such that for El E 0

\...., y.

For such an E, by Yamabe's theorem (Theorem 2.1) applied to C(T) and N
there exists g E N such that

Thus

g(t;) /;(t,), i I,... , y,

gEM, g(ti) ~= f(t;), i =.' I, ... , y

and

and

E.

f-- g < 2E.

The result follows.
Given f E X satisfying the conditions of Theorem 1.5 define for each

j I, .... y, constants

{I; (k(t;) - f(tJ)/2, (Ii

and continuous functions

.f;U )=- min[(a;'jj~- fl(t), k(t )],

.f;-(t)~= max[({lj-I fl(t), h(f)].

By Lemma 2.2, and the finite dimensionality of the N v , there exists a 1\ such
that for v VI there exist best approximations from M v , A; ,Pv; of I; .f; .
respectively, satisfying

P:;(ti) .C(t,),

P,,,(f i ) Ii ((i),

I, .... y.

L. ... 'y.

and the normalized maximum error in these approximations

. max max(! P:!; - Ii I ,I p,/ Ii
J :-1, ... ,1/

min min(! a i , a i - )
j- ·-1, ... ,y

converges to zero as v goes to infinity. Let Pdl be a best approximation to f
from M v • Define

(2.6)

'\' max(O, (/(t;)-- Pvn(r;»!a; ).

We note that A;', , A;j are both nonnegative and at least one is zero. Define

P,,; Pl:j aj a, if \'/ 0,

Pv; P,:, a; -- a; if '\';, 0,

Pv.i PI) a; a; if 1\; j'l~i O.
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j I, .. ., y.

We choose Vz ?: VI so large that '\'j is less than I for j= J , ••• , y and v Vz .
Then

LEMMA 2.3. Let ,\.j ,Pvj , V z be defined as above. Then for all v ;;:: V z there
exist

such that

ieee 0, ... , y

y

I (Ji ~ J,
i-=O

i ~ I, ... , y, (2.7)

(2.8)

where

(I (JiPVi)(ti)=/UJ, j I, .... y,
l··-l)

(Ji(V) (I + Ev) \./. I ~= I, .... y,

(2.9)

(2.10)

E,. -+ 0 as v -~ 00. (2.1 J)

Proof The existence of {(Ji};, 1 satisfying (2.7)-(2.9) can be established by
induction.

Induction basis. Take (Jou 1.

Induction step. Given (J,o , ... , (Jss 0 such that

(J" O. 1, ... , .1'; I (J'i ~. 1.
o

(2.12)

I (J" P,,( t i ) f(tJl.
i,-,-O

j ~= J, ... , s. (2. J3)

for .I' = Yl ,0 :s; Yl < y, we prove the existence of (Js 11.0'"'' (J,H.,q satisfying
(2.12) and (2.13) for .I' = 'YI L I.

Take

p«(X) cc (I - (X) (f (J,iPvl(t, I) ) ..L ('<P"" 1(t'H) - f(t,q).
o

If p(O) = 0, take (J'fl.i = e" , i .1'; e" 'l.s+l= O. If p(O) =1= 0, then by the
choice of Pv., 11 and since Ad < I, p(O) lies on one side of 0 and p(l) on the
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other. Hence by linearity of the function pea) there is a unique ex, 0 < ex < 1
such thatp(a) O. Taking

BSf-l.i=[(1
,.:

0....• .1',

.I' : I,

we have the induction step.
It remains to show (2.10) and (2.11).
We note that on entering the inductive step we deal with a function

"I BsiP",
kO

whose value at tHI lies on the line segment joining PvoUSi 1) and fUs,I)' This
shows that each B,H1.HI is less than or equal to B~+I where B~+I is chosen so
that (l - B~+I)PvO -:.- B~ IPv,S+1 interpolates to / at tSi!' Since the Bs',

i = 0, ... , .1', decrease towards the Bi = B,(v) it follows that

i = I, ... , y. (2.14)

Now if '\i is zero then so is B/ and from (2.14), (2.10) holds. If '\i is
nonzero so is B/ and

Thus

A _= Jl'~ PvO)(ti)
VI (Pv' - n(t i ) ,

U-'I

U _. Pvo)(t,)
----_.
(flci PvO)(ti) .

as l' >-W through v such that Avi O.

This proves (2.10) and (2.11).
From the above lemma and the convexity of M,. there exists for v v~

~

fI,'* = I Bi(v) p",
/,,,,,0

in Mv which interpolates to/at t j ,j' 1, y.
Write I p,*(t) - f(t)1 ~:;; L;~o a,(v) I fI"i(t) J(t)
Using the estimate of the last lemma, namely

o ..s:; Bi(v) < (1 <',,) AVi

where <'" .->- 0 as v -)- 00, the estimate

8,)

iflvi(t) -f(t) "'; i a, I (If,(t) 0,,)

[i:: I ~;
t f'c T\B i •

t Hi'
1, .... Y
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and the estimates
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we obtain

E,U), 1, ... , y,

p*(t)-f(t)1

E" (I -+ Ev)(l -:- 0,,) Ev

y

if t E U B;
/,,=1

E"

and writing 0,,' = y(l -+- Ev ) 0, -+- E"

p*(t) - !(t), "'; (2

This concludes the proof.
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